Regulation of bleomycin-induced DNA breakage and chromatin structure in lung endothelial cells by integrins and poly(ADP-ribose) polymerase.
نویسندگان
چکیده
Activation of endothelial cell integrins inhibits DNA breakage by diverse agents, including the DNA-damaging agent bleomycin. DNA breaks activate nuclear poly(ADP-ribose) polymerase (PARP), which regulates chromatin structure and DNA repair. We determined the role of PARP in suppression of bleomycin genotoxicity by integrins using wild-type and PARP knockout mouse lung endothelial cells (MLEC), and the PARP inhibitor, 3-aminobenzamide (3AB). Activation of beta1 integrins by antibody clustering enhanced the sensitivity of wild-type nuclei to digestion with micrococcal nuclease and deoxyribonuclease I, indicating that chromatin structure was altered. 3AB blocked this effect. Knockout and 3AB-treated wild-type MLEC were hypersensitive to deoxyribonuclease I compared with wild-type cells, demonstrating that PARP regulates chromatin structure. Integrin clustering reduced the hypersensitivity of knockout cells, suggesting additional, PARP-independent mechanisms that inhibit nuclease interaction with chromatin. Bleomycin caused DNA breakage in wild-type and knockout MLEC. Breaks were eliminated after 60 min incubation of wild-type cells in drug-free medium, whereas 3AB or PARP knockout inhibited DNA repair. Integrin clustering protected wild-type cells from DNA breakage, and 3AB and PARP knockout inhibited this protection. Bleomycin caused large increases in PARP activity in wild-type but not knockout MLEC, and integrin clustering inhibited the activation of PARP. The results indicate that the antigenotoxic effects of integrin activation require PARP and that integrins alter chromatin structure by PARP-dependent and -independent mechanisms.
منابع مشابه
Base excision repair proteins are required for integrin-mediated suppression of bleomycin-induced DNA breakage in murine lung endothelial cells.
Engagement of integrin cell adhesion receptors suppresses bleomycin (BLM)-induced DNA strand breakage in endothelial cells. Previous investigation of cells from poly(ADP-ribose) polymerase (PARP)-1 knockout mice and with an inhibitor of the enzyme indicated that this facilitator of base excision repair (BER) is required for integrin-mediated suppression of DNA strand breakage. Here, small inhib...
متن کاملIntegrin engagement increases histone H3 acetylation and reduces histone H1 association with DNA in murine lung endothelial cells.
Engagement of integrin cell adhesion receptors in mouse lung endothelial cells induces global sensitivity of DNA to nuclease digestion, reflecting alterations in chromatin structure. These structural changes may contribute to the antigenotoxic effects of integrin engagement in lung endothelium. Because histone acetylation and poly(ADP-ribosyl)ation modulate chromatin structure, we investigated ...
متن کاملEffects of Poly (ADP-ribose) Polymerase Inhibition on DNA Integrity and Gene Expression in Ovarian Follicular Cells in Mice with Endotoxemia
Background: A mouse model of lipopolysaccharide (LPS)-induced inflammation was used to investigate the effect of pharmacological inhibition of nuclear enzyme PARP-1 on oocyte maturation, apoptotic and necrotic death, as well as DNA integrity of follicular cells. Also, the relative expression of cumulus genes (HAS2, COX2, and GREM1) associated with oocyte developmental competence was assessed. M...
متن کاملAdrenomedullin in inflammatory process associated with experimental pulmonary fibrosis
BACKGROUND Adrenomedullin (AM), a 52-amino acid ringed-structure peptide with C-terminal amidation, was originally isolated from human pheochromocytoma. AM are widely distributed in various tissues and acts as a local vasoactive hormone in various conditions. METHODS In the present study, we investigated the efficacy of AM on the animal model of bleomycin (BLM)-induced lung injury. Mice were ...
متن کاملPoly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure*
The epigenetic information encoded in the genomic DNA methylation pattern is translated by methylcytosine binding proteins like MeCP2 into chromatin topology and structure and gene activity states. We have shown previously that the MeCP2 level increases during differentiation and that it causes large-scale chromatin reorganization, which is disturbed by MeCP2 Rett syndrome mutations. Phosphoryl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 59 1 شماره
صفحات -
تاریخ انتشار 2001